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Suppose someone were to tell you that a 
vehicle moving at constant speed was 
accelerating.  You would probably reply 
something to the effect that this could only 
happen if pigs could fly.  But, listen, 
overhead... don't you hear “Oink, oink...”?

It turns out that a vehicle, moving at a 
constant speed, and travelling in a circle, is 
indeed accelerating.  And, the physics 
behind this phenomenon is the basis of 
calculations for motor vehicles that enter 
into yaw.

In this Page from a Physicist’s Notebook, 
we will take a look at the physics involved. 
There's nothing new to learn.  We just need 
to apply what we already know to the 
situation of a vehicle travelling in a circle. 
We will then use physics and mathematics 
obtained from first principles to derive the 
equations that can be applied to motor 
vehicle crashes involving yaw.

The basic information that we need is shown 
in the side bar at the right of the page.  So, 
let's see how this applies to – going round in 
circles!

But first, let's consider the difference 
between speed and velocity.  Many police 
officers will state that velocity (V) is 
measured in m/s, and speed (S) is measured 
in km/h.  Furthermore, it is believed that this 
is the difference between the two quantities.

It's a kind of traffic mythology.  But, for our 
present purposes, we need to dig a little 
deeper  – and explore the real relationship 
between speed and velocity.  

Once again, we already know the answer. 
And, it's not really wrong to indicate that 
velocity is measured in m/s, and speed is 
measured in km/h; they very frequently are. 
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From basic principles…

Equations of uniform motion
     v  =  v0 + at

Newton’s laws of motion
     F = ma
    W = mg

Coefficient of friction:
    µ  =  F 
            W

Acceleration due to gravity
     g = 9.81 m/s²

Similar triangles:
     a  =   b  =  c 
     A      B     C

Trigonometry:
     tan Ɵ = Opposite
                  Adjacent



But, there is a more fundamental difference 
which is very important to the concept of 
yaw.

Speed and Velocity

In previous courses on the physics of 
collisions, I have frequently asked the 
question:  

Supposing that a vehicle is travelling at 80 
km/h, and a second vehicle is travelling at  
90 km/h, what kind of a crash is going to 
occur?  

The usual answer is that the collision is 
going to be very severe.  Two vehicles, each 
travelling at highway speed.  Horrendous 
crash!

Then, I draw the following collision 
scenario:

Hmmh.  Not much of crash!

Nor is the next one:

Of course, when you think of a collision 
between cars travelling at 80 and 90 km/h, 
the image that first comes to mind is:

And, this head-on impact would indeed be a 
very severe collision.  But, another 
possibility is the following:

This is also a crash between two vehicles 
travelling at 80 and 90 km/h and, as a side 
impact, at the speed of the bullet vehicle, 
this would also be very severe.

The common thread in all these scenarios is 
the initial speeds of the two vehicles – at 
80 km/h and 90 km/h.  But, even so, the 
crash outcomes are quite different.
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Clearly, there is another very important 
factor at work.  Direction!  Vehicles 
travelling at a given (constant) speed can be 
moving in quite different directions.  And, 
direction is extremely important in 
determining how a collision might – or 
might not! – occur.

So, the other piece of physics that we 
already know (but almost never consciously 
apply) is that the velocity of a vehicle is a 
vector quantity.  It has a magnitude (which 
we term “speed”), and an associated 
direction (normally the vehicle's heading).  

We can measure speed in km/h.  In fact, 
these are the units we commonly use.  They 
are used on the vehicle's speedometer, and , 
posted on highway signs.  But, our 
American friends use miles per hour (mph) 
so, obviously, other units are possible for the 
quantity speed.  The crews of ships and 
aircraft use nautical miles per hour (knots).  

In fact, we can use whatever units we 
choose since the basic definition of speed is 
the rate of change of distance with time, or 
the distance travelled divided by the time 
taken (v = d/t).  Any units for distance could 
be combined with any units for time but, 
conventionally, only certain combinations 
that give manageable numbers (e.g. tens of 
km/h) are commonly adopted.

So, while the magnitude of velocity is 
usually indicated in m/s, in principle, there 
is no reason it can't be defined as a 
(different) number of km/h.  It isn't the units 
that define speed or velocity; it's whether or 
not we include the direction of travel. 
Velocity is speed in a specified direction. 
Speed is a scalar quantity (it's the magnitude 
or size of the velocity), while velocity is a 
vector.

Motion in a Circle

So, now let's consider what happens when a 
vehicle travels in a circle.

Clearly, the driver can apply a constant 
amount of throttle and so maintain a 
constant speed.  Thus, we can definitely 
think about a vehicle travelling at constant 
speed (any value you like – say 13.9 m/s – 
50 km/h).  But, what happens to the 
vehicle's velocity as it travels around the 
circle?

Let's say that, at point A (Figure 1), the 
vehicle is travelling at 50 km/h due east.  A 
short time later, at point B, it will be still be 
travelling at 50 km/h, but now it will be 
heading southeast.  At point C it will be 
travelling at 50 km/h due south, and so on.

The vehicle is travelling at constant speed, 
but its velocity is constantly changing – 
because the vehicle's heading is constantly 
changing as it moves around the circle.

Now, if the vehicle experiences a change in 
velocity, say in the time it takes to move 
between points A and B, it must also 
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Figure 1.  Motion in a circle
at constant speed



experience an acceleration, since 
acceleration is defined as the rate of change 
of velocity.

The definition of acceleration is the first of 
the equations of uniform motion:

                         v  =  v0 + at                   (1)

Re-arranging this equation gives:

[ – v0 ]

v –  v0  =  at

[ /t ]

                           a  =  v –  v0                 (2)
                                      t

(Acceleration = change in velocity/time)

So, our vehicle that is moving in a circle, is 
travelling at constant speed, but, because its 
heading is changing over time, its velocity is 
changing, and the vehicle is accelerating.

Newton's First Law of Motion tells us that a 
vehicle will remain at rest or at constant 
speed in a straight line (constant velocity) 
unless acted upon by an unbalanced force. 
The other way of looking at this is that if the 
vehicle's velocity changes (i.e. the vehicle 
accelerates), there must be a force acting to 
cause the acceleration.

So, there must be a force acting on the 
vehicle that causes it to keep moving around 
the circle (as opposed to moving off at the 
constant speed of 50 km/h, in a straight line, 
which would be a tangent to the circle). 
This force is the side force (friction) acting 
between the road and the vehicle's tires as 
the tires try to slip sideways across the road 

(action) and the road surface pushes back 
against the tires (reaction).  

Thus, the side force on the vehicle's tires 
produces the lateral acceleration that the 
vehicle experiences as it rounds the curve.

Newton's Second Law of Motion allows us 
to quantify the force:

    F = ma

where:

    F  =  Side force
    m  = Mass of the vehicle
    a  =  Lateral acceleration

And, as suggested earlier, the lateral forces 
acting – the tire pressing against the road, 
and the road pushing back against the tire – 
are examples of action and reaction forces 
(Newton's Third Law of Motion – Action 
and reaction are equal and opposite.)

Note also, that the physical evidence on the 
vehicle and at the collision scene show the 
presence of these forces.  The tire tread and 
sidewall can exhibit scuffing from the force 
applied by the rough roadway surface. 
“Yaw marks” on an asphalt pavement, or 
gravel thrown to the outside of the path of 
travel, are evidence of the vehicle's tires 
pressing against the road surface.

So, the physics that we already know – the 
equations for uniform motion and Newton's 
laws of motion  – are entirely consistent 
with a vehicle moving at constant speed in a 
circle, requiring a lateral force to constantly 
change the vehicle's heading, and hence its 
velocity, and resulting in the development of 
lateral acceleration.  The vehicle does 
indeed travel at constant speed and 
accelerate!  It must!
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Lateral Acceleration

In order to quantify a vehicle's motion 
around a curve (part of a circle), we first 
need to develop an equation for the lateral 
acceleration that is developed.  

The rigorous mathematical derivation of this 
acceleration uses a technique known as 
(differential and integral) calculus.  But, this 
subject is quite complex, and forms a course 
in itself, so we will resort to an approx-
imation technique, that is more-or-less the 
basis used in calculus.

Figure 2 shows a vehicle rounding a curve. 
We are going to concentrate on the motion 
of the vehicle between points A and B.

The vehicle is travelling at constant speed 
such that:

                            v1  =  v2                     (3)

This equation tells us that the magnitude of 
the vehicle's velocity at point A is equal to 
the magnitude of the vehicle's velocity at 
point B (remember, that's what we mean by 
“speed”).

But, the velocity of the vehicle at point A is 
different from the velocity of the vehicle at 
point B since the heading of the vehicle has 
changed between the two locations.

Recall that velocity is a vector.  It has both 
magnitude (speed), and direction.  In 
Figure 1, we have represented the two 
vectors by straight lines drawn to (some) 
scale, with arrows indicating the velocity's 
direction.  Note that the two arrows are the 
same length, showing that the speed is 
constant, but point in different directions, 
showing the changing heading.

Since the vehicle's velocity has changed 
between points A and B, we can use a vector 
triangle (or parallelogram) to determine the 
actual change in velocity.  

The relevant vector diagram is shown in 
Figure 3.  The vector DE represents the 
vehicle's velocity at point A, while the 
vector DF represents the velocity at point B.

Now if:

then:

DG is equal to the vector – v1  since it has 
the same length as vector DE (v1), but is 
pointing in precisely the opposite direction.
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Vector Algebra

The graphical representation of vectors, 
and the mechanism by which they may 
be combined (vector triangle or 
parallelogram) is used extensively in 
calculations involving momentum.  A 
full discussion of this topic, including 
the basic concepts of vector algebra, the 
derivation of the equation for 
conservation of linear momentum, plus 
graphical and algebraic solution 
techniques, have been discussed in 
previous Pages From a Physicist's  
Notebook. [1-3]  
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Figure 2.  Motion in a circular arc

Figure 3.  Vector Diagram for Vehicle Velocity Change



Note also that the vector FH is equal to 
vector DG since it has the same length 
(magnitude) and points in the same 
direction.  So, in vector triangle DFH, we 
can see that:

(DH is the resultant of the two vectors DF 
and FH.)

This means that:

So, vector DH represents the vehicle's 
change in velocity (v2 – v1) between points 
A and B along the circular arc.

We can also see from Figure 3, that the 
vector EF is the same as vector DH since it 
has the same length as DH and points in the 
same direction.  Thus the vector EF also 
represents the vehicle's change in velocity 
between points A and B.

So, in vector triangle DEF, the vector DF 
represents the final velocity of the vehicle at 
point B (v2), vector DE represents the initial 
velocity of the vehicle at point A ( v1), and 
vector EF represents the change in velocity 
(v2 – v1).

Now, comparing Figures 2 and 3, we can see 
that DEF and CAB are similar triangles. 
They have the same angles, so that the sides 
of the triangles are in the following 
proportions:

AB  =  EF
AC      DE

Now, AB is the linear distance ( l ) between 
points A and B, while AC is the radius ( R ) 
of the circle.  Also, the length of DE is the 
change in vehicle speed  (v2 – v1) and the 
length of EF is the vehicle's speed ( v1 ).

Consequently, we have:

                     l         (v2 – v1)
                                       ___                  _____________

                     R             v1 

[ x v1 ]

               (v2 – v1)  =  l  v1 
                                                                       __

                                    R

Now, let's divide each side of the equation 
by t, the time taken for the vehicle to travel 
between points A and B (and hence the time 
taken to change its velocity from v1 to v2).

[ / t ]

               (v2 – v1)  =  l  v1 
                              ______________            ___  

                      t            R t

But, we know from one of the equations for 
uniform motion (Equation 2) that, in the 
present case, (v2 – v1)/t is the vehicle's 
lateral acceleration.

Consequently:

                      a =    l        v1                         (4)
                            R t

We also know that the vehicle is travelling 
at constant speed (V) so that we can write 
Equation 3 as:
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                      V  =  v1  =  v2

This gives Equation 4 as:

                      a =    l        V                         (5)
                            R t

So far, we have an expression for the 
magnitude of the lateral acceleration in 
terms of the constant vehicle speed ( V ), the 
radius of the circle ( R ), the distance ( l ) 
and time ( t ) for the vehicle to move 
between points A and B.

Note that, in Figure 3, the actual distance 
travelled by the vehicle between points A 
and B is the length of the arc (s).  Since the 
vehicle is moving at constant speed, the 
distance travelled ( s ) will be given by:

                         s  =  V t                       (6)

Now it's time to do a little approximating. 
Suppose that points A and B are very close 
together.  The angle Ɵ will be very small, 
and the distance along the arc ( s ) will 
almost be the same as the linear distance ( l ) 
between points A and B.  Consequently, we 
can write Equation 6 as:

                         l  ≈  V t

And, in the limit as  Ɵ approaches zero (this 
is the infinitesimal calculus bit!):

                         l  =  V t                       (7)

so that:

[ / v ]
                        t = l / V                           (8)

We can now substitute for the time, t, from 
Equation 8 into Equation 5 to give:

                      a  =         l     V      
                              R ( l /V)

                        a  =  V  2                             (9)
                                 R

Equation 9 gives the magnitude of the lateral 
acceleration.  But, since acceleration is a 
vector quantity, we should also consider its 
direction.  Going back to our approximation, 
as the angle Ɵ gets very small and 
approaches zero, the line BC will almost be 
the same as the line AC.  Similarly, the 
vectors ED and EF will almost be the same. 
In the limit, as Ɵ goes to zero, the change in 
velocity (vector EF) will act at right angles 
to the vehicle's velocity (vector ED), and 
hence be pointing towards the centre of the 
circle.  Since the acceleration vector must 
act along the same line as the change in 
velocity [a=(v2 – v1)/t], it is evident that the 
vehicle's acceleration must be towards the 
centre of the circle.

Since the acceleration of the vehicle is 
acting at right angles to the vehicle's forward 
(longitudinal) velocity, we term the 
acceleration the lateral acceleration.
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Motion in a circle

Lateral acceleration,  a  =  v2                                                                                                           ____

                                               R



Yaw Equation

Now that we have an expression for a 
vehicle's lateral acceleration as it rounds a 
curve, we can consider a way to quantify 
this acceleration.

As we noted earlier, the presence of the 
lateral acceleration means that there is a 
lateral force acting on the vehicle, constantly 
causing the change in heading to produce 
the circular motion.  As the tires try to slip 
sideways across the road surface, the road 
pushes back against the tires so that friction 
provides the necessary side force.

Newton's Second Law of Motion (F=ma), 
tells us how large this force has to be for a 
given vehicle mass (m) and lateral 
acceleration (a).

Thus, the lateral force is given by:

                         F  =  m a

From Equation 9, we know that the lateral 
acceleration is V2/r so substituting this for a 
in the above equation gives:

                       F  =  m  V  2                     (10)
                                      R

We also know that the maximum frictional 
force (F) that can be produced is dependent 
on the weight of the vehicle (W=mg) and 
the available coefficient of friction between 
the tires and the road surface (µ) where

                  F =  µW =  µmg              (11)

Substituting for F from  Equation 11 into 
Equation 10 gives:

                  µmg  =  m  V  2   
                                      R
[ / m ]

                       µg  =    V  2   
                                     R

[ x R ]

                    V2  =  µ g R

But, g = 9.81 m/s², so that:

                    V2  =  9.81 µ R

[ √ ] 

                    V  =  √ (9.81 µ R)

                    V  =   3.13 √ (µ R)            (12)

Since the gravitational acceleration (g) is 
measured in m/s2, and we usually measure 
the radius of the curve ( R ) in m, the above 
equation gives the speed (V) in m/s.

To convert the speed in m/s to km/h, we use 
the fact that 1 m/s = 3.6 km/h, so that:

                S  =  11.28 √ (µ R)                 (13)
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Yaw Equation

V  =   3.13 √ (µ R)   m/s

S  =  11.28 √ (µ R)   km/h



Lean Angle

Motorcyclists generate lots of side force by 
leaning into the turn.  For example, think of 
motorcycle racing, where the rider leans the 
machine into the curve, but also hangs out as 
far as possible, scraping his leathers against 
the track!  The rider generates the maximum 
side force by creating the biggest lean angle 
– without falling over!

 

We can see how the force is generated by 
looking at a sectional view of the 
motorcycle rounding a level curve 
(Figure 4).  

In the simplified diagram, we can see that, 
for a given speed ( V ) around a curve of 
constant radius ( R ), the lean angle ( Ɵ ) is 
determined by the ratio of the frictional side 
force ( F ) and the weight of the motorcycle 
and rider ( W ) .  In particular, the triangle of 
forces gives:

     tan Ɵ  =  Opposite  =   F  =  µmg 
                    Adjacent       W      mg

Consequently:

                  tan Ɵ  =  µ                 (14)
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Figure 4.  Motorcycle Lean Angle

Motorcycle Lean Angle

Ɵ = tan-1 (µ)
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